
MATEMÁTICA 2

OCTUBRE-NOVIEMBRE

OPERACIONES COMBINADAS

En una operación combinada los cálculos numéricos no siempre se realizan de izquierda a derecha siguiendo el orden normal de la escritura.

Las operaciones se efectúan respetando las reglas que vamos a ver a continuación.

Regla 1

Si en una operación combinada no existen paréntesis () ni corchetes [] entre la adición y la sustracción, ninguna tiene prioridad. Se puede empezar por cualquiera de ellas; veamos:

Ejemplos:

$$47 + 23 - 15 =$$
 $70 - 15 = 55 \rightarrow$
 $47 + 23 - 15 = ?$
 $47 + 8 = 55$

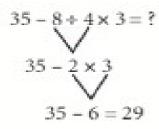
Regla 2

Si en una operación combinada no existen paréntesis ni corchetes, estando primero la multiplicación y luego la división, tiene prioridad la multiplicación sobre la división, luego se efectúan la adición y la sustracción.

Ejemplo 1:

$$9 \times 6 \div 3 + 5 - 8 = ?$$

 $54 \div 3 + 5 - 8$
 $18 + 5 - 8 = 15$


Ejemplo 2:

$$35 - 4 \times 5 \div 2 + 6 = 3$$

 $35 - 20 \div 2 + 6$
 $35 - 10 + 6 = 31$

Regla 3

Si en una operación combinada no existen paréntesis ni corchetes, estando primero la división y luego la multiplicación, tiene prioridad la división sobre la multiplicación, luego se efectúan la adición y la sustracción.

Ejemplo 1:

Ejemplo 2:

$$9 + 24 \div 8 \times 4 - 7 = ?$$

 $9 + 3 \times 4 - 7$
 $9 + 12 - 7 = 14$

2

Regla 4

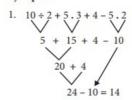
En una operación combinada, las operaciones que están dentro del paréntesis o corchete se realizan primero. Si existen paréntesis dentro de otros paréntesis, tiene prioridad el paréntesis que está más al interior.

Ejemplo 1

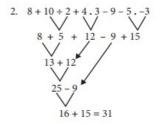
$$5 \times [12 + (3 + 7) = ?$$

 $5 \times [12 + 10] = ?$
 $5 \times 22 = 110$

Ejemplo 2


$$36 \div [16 \div 8 + 7] = ?$$

 $36 \div [2 + 7] = ?$
 $36 \div 9 = 4$


https://youtu.be/w016sdtyv1w?si=iL0J8eNdK_jip8bQ

I. SIN SIGNOS DE AGRUPACIÓN

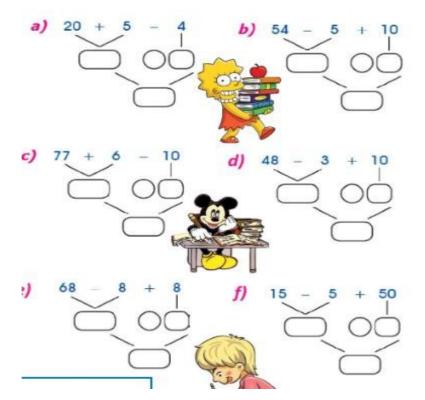
- Realizamos las multiplicaciones y divisiones en el orden en el que aparecen porque las dos operaciones tiene la misma prioridad.
- Efectuamos las adiciones y sustracciones de izquierda a derecha.

Ejemplos:

II. CON SIGNOS DE AGRUPACIÓN

 Primero se desarrolla las operaciones que están dentro de los paréntesis.

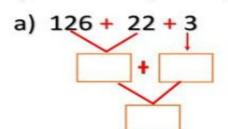
- Si hubieran corchetes y llave se resuelven los ejercicios que están dentro del mismo respetando la jerarquía.
- Luego procedemos con las multiplicaciones y divisiones
- Finalmente, efectuamos adiciones y sustracciones de izquierda a derecha.

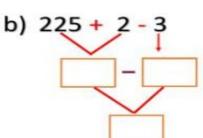

Ejemplos:

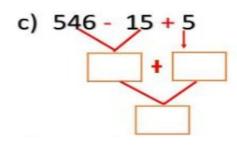
1.
$$[15 - (8 - 10 \div 2)] \cdot [5 + (3 \cdot 2 - 4)]$$

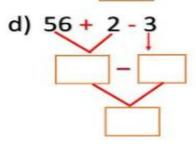
 $[15 - (8 - 5)] \cdot [5 + (6 - 4)]$
 $[15 - 3] \cdot [5 + 2]$
 $12 \cdot 7 = 84$

Act Ve a


3


1. Resuelve las siguientes operaciones combinadas:




Operaciones Combinadas

1) Resuelve las siguientes operaciones :

OPERACIONES COMBINADAS (SUMAS Y RESTAS) 16-(6+5) 16-6+5 15-(8-5) 9-(8-1) 9-8-1 15-8-5 15-4-1+3 5-(4-1)+3 12+2-9+3 12+2-9+3 12+2-9+3

Realiza los siguientes ejercicios

- 1) 30 + 5 x 4 =
- 2) 20 : 2 + 3 =
- 3) (5 + 8) x 6 =
- $4)7 + 8 \times 9 =$
- 5) (34 x 2) + (33 x 3) =
- 6) 100 x 5 2 x 20=
- 7) 25 2 x 7 =
- 8) (5 + 5) (2 x 4) =
- 9) 6 x 6 +10 =
- 10) 99 7 + 10 =

ECUACIONES

Una ecuación es una igualdad matemática entre dos expresiones, donde al menos una de ellas contiene una o más incógnitas (variables) que se deben determinar. Su propósito es encontrar el valor o los valores de esa incógnita (o incógnitas) que hacen que la igualdad sea verdadera. Las ecuaciones se utilizan para modelar y resolver problemas en diversas áreas, como matemáticas, ciencias y la vida cotidiana

Partes de una ecuación

- Miembros: Son las expresiones que se encuentran a ambos lados del signo igual.
- Signo de Igualdad (=): Indica que las dos expresiones tienen el mismo valor.
- Incógnitas (o Variables): Son los valores desconocidos, usualmente representados por letras como x, y o z.
- Términos: Son los números o letras que están separados por signos de suma o resta dentro de una expresión.

Las ecuaciones son herramientas fundamentales para:

Resolver problemas:

Ayudan a encontrar valores desconocidos en situaciones que van desde un cálculo de descuento en el supermercado hasta el análisis del crecimiento bacteriano.

Modelar el mundo real:

Permiten describir y comprender fenómenos físicos, químicos y económicos.

Desarrollar la ciencia y la tecnología:

Son esenciales en la investigación y en la creación de nuevas soluciones tecnológicas.

Ejemplo:

Una ecuación es una proposición matemática que afirma la igualdad de dos expresiones, generalmente representadas con un signo igual ("=") entre ellas.

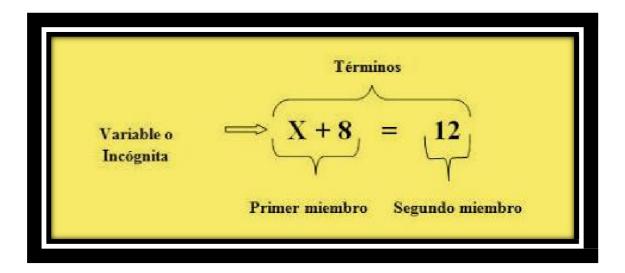
Por ejemplo, una ecuación como "x + 3 = 7" indica que la expresión de la izquierda es igual a la de la derecha.

X + 3 = 7

X = 3 + 7

X = 10

En la ecuación 2x + 5 = 15, la igualdad nos dice que la expresión 2x + 5 debe ser igual a 15. Para resolverla, buscaríamos el valor de x que cumpla esta condición.


2x + 5 = 15

2x = 15 - 5

x = (15 - 5) : 2

x = 10 : 2

x = 5

A TENER EN CUENTA

- ♣ En una ecuación como se muestra en el cuadro, lo que está antes del = forma parte del 1º miembro y, lo que está después del = forma parte del 2º miembro
- Al resolver las ecuaciones debemos tener en cuenta que las operaciones que están en un miembro al pasar a otro cambian de signo
 - * (en el ejemplo +5, del 1° miembro, pasa al 2° miembro 5,
 - * y el 2 que multiplica a x pasa dividiendo (:2)

2x + 5 = 15

2x = 15 - 5

x = (15 - 5) : 2

x = 10 : 2

x = 5

5

Resuelve las siguientes ecuaciones, luego une con el resultado que corresponde

x = 30

2)
$$x + 5 = 10$$

x = 60

3)
$$x + 8 = 11$$

x = 5

4)
$$x - 11 = 16$$

x = 32

5)
$$x - 9 = 21$$

x = 27

x = 3

x = 29

Resuelve las siguientes ecuaciones, luego une con el resultado que corresponde

$$X + 7 = 26$$
 •

X = 0

$$X - 18 = 40$$
 •

X = 52

X = 104

• X = 46

X = 130

X = 277

• X = 58

X = 19

$$X - 76 = 201$$

X = 11

Ecuaciones de Primer Grado

1. En tu carpeta resuelve cada una de las siguientes ecuaciones, luego escribe en cada recuadro el valor de x que hace verdadera la igualdad.

$$2x + 3x + 5 = 65$$
 $y - 3y - 6 = 28$

$$y - 3y - 6 = 28$$

$$15 - a + 4a = -6$$

$$15 - a + 4a = -6$$
 $m + 14 - 2m = -8$ $m = 6$

$$4x + 6 = -x - 14$$

$$4x + 6 = -x - 14$$
 $-6x + 8 = 2x + 64$
 $x =$ $x =$

$$3y + 6 = -30 + 2$$

$$3y + 6 = -30 + 2y$$
 $2(6 + 5x) - 11 = 71$
 $y =$ $x =$

$$4(8-4n) = 2(n-40) + 4$$

$$n = \square$$

$$4(8-4n) = 2(n-40) + 4$$
 $6(2x + 5) = -3(-x + 2)$
 $n =$ $x =$

Resuelve las siguientes ecuaciones, luego une con el resultado que corresponde

1)
$$4x = 40$$

$$x = 5$$

$$2) \times + 5 = 10$$

$$x = 60$$

$$3) \times + 8 = 11$$

$$x = -4$$

$$4) \times -11 = 16$$

$$5) \times -9 = 21$$

$$6) x + 3 = 32$$

$$7) 6x = 42$$

$$8) \times + 14 = 46$$

$$x = 30$$

$$9) 8x = -32$$

$$x = 10$$

$$10)x + 4 = 64$$

$$x = 27$$

PERIMETRO Y AREA DE FIGURAS

El perímetro es la longitud total del contorno de una figura geométrica, mientras que el área es la medida de la superficie que ocupa la figura. Calcular el perímetro y el área es fundamental para comprender y describir las propiedades de las formas

Perímetro:

- Se obtiene sumando las longitudes de todos los lados de la figura.
- Por ejemplo, para un cuadrado de lado "a", el perímetro es 4a.
- Para un rectángulo de base "b" y altura "h", el perímetro es 2(b + h).
- Un triángulo, sea equilátero, isósceles o escaleno, se calcula sumando la longitud de sus tres lados.

Área:

- El área representa la cantidad de espacio dentro de una figura.
- Para un cuadrado, el área es a² (lado al cuadrado).
- Para un rectángulo, el área es base por altura (b x h).
- Para un triángulo, el área se calcula como (base x altura) / 2

Importancia:

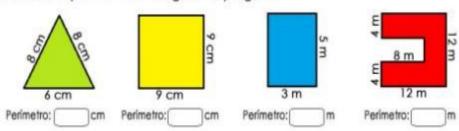
- El cálculo del perímetro y área permite comprender las dimensiones de objetos y espacios.
- Estas medidas son útiles en diversas aplicaciones, como la construcción, la jardinería y la planificación de espacios.
- Por ejemplo, al construir una cerca, se necesita conocer el perímetro del terreno. Al pintar una pared, se necesita saber su área

ESTE VIDEO TE AYUDARÁ A ENTENDER Y TRABAJAR MEJOR EL TEMA

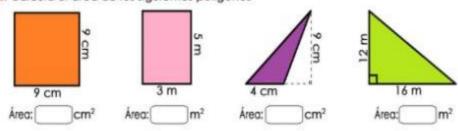
PERIMETROS Y ÁREAS DE 9 FIGURAS GEOMÉTRICAS-

EJEMPLOS

https://youtu.be/6NQub5CEe-Y?si=jmaHo9fWsjG1fnTG

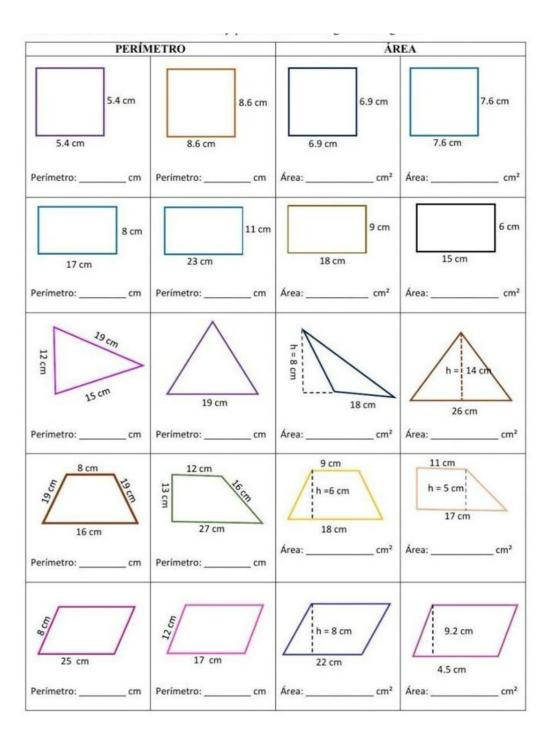

8

En el siguiente cuadro encontrarás las figuras, formulas y ejemplos del procedimiento de cálculo de los perímetros y áreas


NOMBRE	FIGURA	PERIMETRO	AREA
TRIANGULO Es la porción de plano limitada por tres segmentos de recta.	a h c	P = a + b + c P = 2,2 cm + 3,1 cm + 2,2 cm P = 7,5 cm	A = bxh 2 b: base h: altura
PARALELOGRAMO Cuadrilátero que tiene sus lados opuestos iguales y paralelos.	h a	P = 2b + 2a P = 2(2,4cm) +2(1.6cm) P = 4,8 cm +3,2 cm P = 8cm	A = b x h b: base h: altura
CUADRADO Cuadrilátero de cuatro lados y 4 ángulos iguales.	1	P = 4.1 P = 4(1,3cm) P = 5,2 cm	A = I ² I : medida del lado
RECTÁNGULO Cuadrilátero cuyos cuatro lados forman ángulos rectos entre sí. Los lados opuestos tienen la misma longitud.	b	P = 2b + 2h P = 2(2,5cm) + 2(1,3 cm) P = 5cm + 2,6cm P = 7,6 cm	A = b x h b: base h: altura
ROMBO Cuadrilátero cuyas dos diagonales se cruzan en ángulo de 90º		P = 4.1 P = 4(1,7 cm) P = 6,8 cm	A = D x d 2 D: diagonal mayor d: diagonal menor
TRAPECIO Cuadrilátero que tiene dos de sus lados paralelos y los otros dos no	a b c	P = a + b + c + B P=1,7cm+1,6cm +1,7cm+2,8cm P = 7,8 cm	A = (B+b).h 2 B: base mayor b: base meno h: altura
POLIGONO REGULAR Porción de plano limitada por segmentos de recta, todos sus lados y ángulos son iguales		P = n. l P = 6 (1,1 cm) P = 6,6 cm	A = p.a 2 A = n.l.a 2 P: perimetro a: apotema n: número de lados l: medida del lado
CÍRCULO Región del plano limitada por una circunferencia (Curva plana y cerrada donde todos sus puntos están a igual distancia del centro)		P = 2 π.r P = 2(3,14)(0,9cm) P = 5,652 cm P = 5,65 cm	$A = \pi.r^2$ $\pi = 3,1415 \approx 3,14$ r: radio del círculo

Actividades:

1. Calcula el perímetro de los siguientes polígonos



2. Calcula el área de los siguientes polígonos

3. Observa las medidas y calcula el área de cada figura

